FIGURE 43. MAXIMUM PRESSURE-TO-STRENGTH RATIO, p/2S, IN MULTIRING CONTAINER DESIGNED ON BASIS OF STATIC-SHEAR STRENGTH Each ring is assumed to be of the same ductile material. FIGURE 44. MAXIMUM PRESSURE-TO-STRENGTH RATIO, p/o, IN MULTIRING CONTAINER DESIGNED ON BASIS OF FATIGUE SHEAR STRENGTH Each ring is assumed to be of the same ductile material. The stress range parameter α_r depends on the mean stress parameter α_m . The mean stress depends not only on the bore pressure p but on the interface pressures p₁ and q₁ between the liner and the second cylinder. The magnitudes of p₁ and q₁ that are possible depend upon the geometry and strength of the outer cylinders. The outer rings are assumed to be all made of the same ductile material. Conducting a fatigue-shear-strength analysis of a multiring container having a pressure fluctuating between q_1 and p_1 , we find from a method similar to that used in arriving at Equation (39) (using Equation (37) for $n=2, 3, \ldots, N-1$), that in this case also the optimum design has $$k_2 = k_3 = \dots = k_n$$ (45) Calculating the mean stress σ_m at the bore of the liner, equating $\alpha_m \sigma_1$ to σ_m from Equation (10b), substituting for q_1 from Equation (32), eliminating σ_1 by use of Equation (44), and solving for p_1 , one finds $$p_{1} = \frac{p}{K^{2} - 1} \left[\frac{K^{2} - k_{1}^{2}}{k_{1}^{2}} + \frac{(K^{2} + 1)}{4} - \frac{(k_{1}^{2} - 1)}{k_{1}^{2}} - \frac{(\alpha_{r} - \alpha_{m})}{\alpha_{r}} \right]$$ (46) The other interface pressures p_n , $n \ge 2$ are again given by Equation (38). Eliminating the pressures p_1 and p_n , $n \ge 2$ from Equations (46) and (38), and solving for the pressure-to-strength ratio p/σ , one gets $$\frac{p}{\sigma} = \frac{2(K^2 - 1) (k_n^2 - 1) (N-1) k_1^2 \alpha_r}{k_n^2 [5(K^2 - k_1^2)\alpha_r + (\alpha_r - \alpha_m) (K^2 + 1) (k_1^2 - 1)]}$$ (47) The k_n , $n \ge 2$ in Equation (47) are equal as shown by Equation (45). Whereas, p/σ_1 depended only upon α_r and K (Equation (44)), p/σ depends on N, k_n , and α_m in addition. The ratio p/σ can also be limited by the requirement on Relations (7) and (9) that the mean shear stress S_m in Cylinder 2 at r_1 obeys the relation $S_m \geqq 0$. $S_m \geqq 0$ gives $$\left(\frac{p}{\sigma}\right)_{\text{limit}} = \frac{2}{3} \frac{(K^2 - 1)}{K^2} k_1^2$$ (48) As is evident from the limit curves plotted in Figure 46, the pressure limit for the outer rings can be increased by increasing k_1 . This means that the liner has a great effect on p. The strength of the liner, σ_1 , influences p in Equation (44). The size of the liner, k_1 , limits p in Equation (48). Whether or not p/ σ can be allowed as high as the limit, however, depends on the other factors N, α_r , K, etc., as shown by Equation (47). This dependence is rather complicated. Example curves of p/ σ are plotted in Figures 47 and 48 for α_r = 0.5 and α_m = -0.5. As shown by these curves p/ σ increases with N and also increases with k₁ for N = 5, K \geq 6.5.